

Looking at the sky...

... more like this

Big questions about the Universe

Charge-Parity violation

Higgs bosson

Particles of the Standard Model

Physics Experiments at CERN

The Large Hadron Collider

Engineers maintaining LHC

The ATLAS experiment detector

Particle trajectories in the detector

Background image: Shutterstock

A large number of particle trajectories

Online processing system

XENA DCU

(intel)

ICE-DIP 2013-2017: The Intel-CERN European Doctorate Industrial Program

A public-private partnership to research solutions for next generation data acquisition networks, offering research training to five Early Stage Researchers in ICT

Intel Xeon Phi Coprocessor

> Up to 61 Cores > PCle card **Different computation modes** Offloading Symmetric

(intel)

My focus in the online processing pipeline

Figure 1. An overview of the ALICE data acquisition process with emphasis on the Event Processing Nodes.

Coprocessor-Host communication in the online processing system

Data transfer libraries for the data acquisition system of the ALICE experiment

> High level messaging patterns (e.g. pub-sub)

Used to create
distributed systems

Provides good performance

ØMQ

nanomsg

Symmetric Communications Interface (SCIF) For Intel® Xeon Phi

- Communication over PCIe with minimum overhead
- > POSIX-like interface (listen, connect, send, receive)
 - RDMA capability (registering memory and read/write to remote address space)
 - memory mapped IO along the lines of POSIX mmap

>

SCIF RDMA

An opportunity for improvement

Figure 2. This plot corresponds to a performance test of transferring 16B payload in chunks from 4KB to 128MB[1].

22

The features of the new transport mechanism over SCIF

> Streaming semantics (along the lines of TCP)

> Cacheline-aligned RDMA transfers only

Lock-free one-sided communication

Maximize data transfer throughput (bandwidth)

Application

(intel) RENA DCU II Marent Aram Santogidis

Receiver

0x56 bytes of user data

The performance of Trans4SCIF

The ZeroMQ extension with SCIF

XENA

DCU

CERNopenlab

The performance of ZeroMQ extend with SCIF via Trans4SCIF

ZeroMQ (extended with SCIF)

33

The Trans4SCIF library the Intel Xeon Phi Coprocessor

> Easy-to-use socket-like interface

- Send/Recv
- E.g. up to 3 GB/s data throughput (4x imporovementwith the cost of 32 MB of memory space
- > ZeroMQ extension for SCIF
- In principle can be re-used by other RDMA based transports (e.g OmniPath)

Acknowledgements

Than you for your attention.

This research project has been supported by a Marie Curie Early European Industrial Doctorates Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2012-316596-ICE-DIP).

